Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires.

نویسندگان

  • Po-Chun Hsu
  • Shuang Wang
  • Hui Wu
  • Vijay K Narasimhan
  • Desheng Kong
  • Hye Ryoung Lee
  • Yi Cui
چکیده

For transparent conducting electrodes in optoelectronic devices, electrical sheet resistance and optical transmittance are two of the main criteria. Recently, metal nanowires have been demonstrated to be a promising type of transparent conducting electrode because of low sheet resistance and high transmittance. Here we incorporate a mesoscale metal wire (1-5 μm in diameter) into metal nanowire transparent conducting electrodes and demonstrate at least a one order of magnitude reduction in sheet resistance at a given transmittance. We realize experimentally a hybrid of mesoscale and nanoscale metal nanowires with high performance, including a sheet resistance of 0.36 Ω sq(-1) and transmittance of 92%. In addition, the mesoscale metal wires are applied to a wide range of transparent conducting electrodes including conducting polymers and oxides with improvement up to several orders of magnitude. The metal mesowires can be synthesized by electrospinning methods and their general applicability opens up opportunities for many transparent conducting electrode applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance enhancement of metal nanowire-based transparent electrodes by electrically driven nanoscale nucleation of metal oxides.

Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW...

متن کامل

Conducting Polymer Wires for Intravascular Neural Recording

Brain-machine interfaces are a technology with the potential to fundamentally change the way people interact with their environment, but their adoption has been hampered by the invasiveness of conventional implanted cortical microelectrode arrays. Llinás et al. have proposed a novel design for intravascular nanowire electrode arrays, which promise to be less invasive than current technology. Ea...

متن کامل

Smooth nanowire/polymer composite transparent electrodes.

IO N Transparent electrodes are critical components of thin-fi lm optoelectronic devices such as displays and thin-fi lm solar cells. Most high-performance transparent conducting fi lms in use today are composed of sputtered metal oxides. [ 1 , 2 ] These fi lms can have sheet resistances under 20 Ω − 1 with 90% transmission when deposited at a high temperature onto glass and resistances increas...

متن کامل

A transparent electrode based on a metal nanotrough network.

Transparent conducting electrodes are essential components for numerous flexible optoelectronic devices, including touch screens and interactive electronics. Thin films of indium tin oxide-the prototypical transparent electrode material-demonstrate excellent electronic performances, but film brittleness, low infrared transmittance and low abundance limit suitability for certain industrial appli...

متن کامل

Solution-processed metal nanowire mesh transparent electrodes.

Transparent conductive electrodes are important components of thin-film solar cells, light-emitting diodes, and many display technologies. Doped metal oxides are commonly used, but their optical transparency is limited for films with a low sheet resistance. Furthermore, they are prone to cracking when deposited on flexible substrates, are costly, and require a high-temperature step for the best...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013